Utils¶
Utility functions and constants for the Neuroptimiser framework.
- get_2d_sys(kind='sink', trA_max=1.5, detA_max=3.0, eps=1e-06) ndarray [source]¶
Generate a 2D dynamic system matrix based on the specified kind.
- Parameters:
kind – Type of dynamic system (“random”, “saddle”, “attractor”, “repeller”, “source”, “sink”, or “centre”).
trA_max – Maximum trace value for the system matrix.
detA_max – Maximum determinant value for the system matrix.
eps – Small value to avoid division by zero or negative values.
Returns: A 2x2 numpy array representing the system matrix.
- get_arch_matrix(length, topology: str = 'ring', num_neighbours: int | None = None) ndarray [source]¶
Generate an adjacency matrix for a given topology.
- Parameters:
length – Number of nodes in the network.
topology – Type of network topology (e.g., “ring”, “fully-connected”, “random”).
num_neighbours – Number of neighbours for random topology (if applicable).
Returns: A square adjacency matrix representing the specified topology.
- get_izhikevich_sys(kind='RS', scale=0.1) dict [source]¶
Get the parameters for an Izhikevich neuron model.
- Parameters:
kind – Type of Izhikevich model (e.g., “RS”, “IB”, “CH”, “FS”, “TC”, “TCn”, “RZ”, “LTS”, or “random”).
scale – Scale factor for random perturbation of parameters (default is 0.1).
Returns: A dictionary containing the parameters of the Izhikevich model.
- reset_all_processes(*processes) None [source]¶
Reset all provided processes to their initial state.
- Parameters:
*processes – Variable number of process instances to reset.
Returns: None
- tro2s(x: ndarray | float, lb: ndarray | float, ub: ndarray | float) ndarray | float [source]¶
Transform a value from the original scale to a normalized scale.
- Parameters:
x – Value or array of values to transform.
lb – Lower bound of the original scale.
ub – Upper bound of the original scale.
Returns: Normalized value or array of values in the range [-1, 1].
- trs2o(x: ndarray | float, lb: ndarray | float, ub: ndarray | float) ndarray | float [source]¶
Transform a value from a normalized scale back to the original scale.
- Parameters:
x – Normalized value or array of values in the range [-1, 1].
lb – Lower bound of the original scale.
ub – Upper bound of the original scale.
Returns: Value or array of values transformed back to the original scale.