AbstractPerturbationNHeuristicModel¶
Full Name
neuroptimiser.core.models.AbstractPerturbationNHeuristicModel
Description
- class AbstractPerturbationNHeuristicModel[source]¶
Bases:
PyLoihiProcessModel
Abstract model for a perturbation-based nheuristic process model
This model serves as a base for implementing various perturbation-based process models.
See also
neuroptimiser.core.processes.AbstractSpikingCore
Abstract process that implements a spiking core for perturbation-based nheuristics.
- __init__(proc_params)[source]¶
Initialises the process model with the given parameters.
- Parameters:
proc_params (dict) –
- A dictionary containing the parameters for the process model. It should include:
seed
: int, random seed for reproducibilitynum_dimensions
: int, number of dimensions for the perturbationnum_neighbours
: int, number of neighbours for the perturbation
- fg_in: PyInPort = LavaPyType(cls=<class 'lava.magma.core.model.py.ports.PyInPortVectorDense'>, d_type=<class 'numpy.float32'>, precision=None)¶
- fp_in: PyInPort = LavaPyType(cls=<class 'lava.magma.core.model.py.ports.PyInPortVectorDense'>, d_type=<class 'numpy.float32'>, precision=None)¶
- fxn_in: PyInPort = LavaPyType(cls=<class 'lava.magma.core.model.py.ports.PyInPortVectorDense'>, d_type=<class 'numpy.float32'>, precision=None)¶
- g_in: PyInPort = LavaPyType(cls=<class 'lava.magma.core.model.py.ports.PyInPortVectorDense'>, d_type=<class 'numpy.float32'>, precision=None)¶
- p_in: PyInPort = LavaPyType(cls=<class 'lava.magma.core.model.py.ports.PyInPortVectorDense'>, d_type=<class 'numpy.float32'>, precision=None)¶
- s_in: PyInPort = LavaPyType(cls=<class 'lava.magma.core.model.py.ports.PyInPortVectorDense'>, d_type=<class 'bool'>, precision=None)¶
- s_out: PyOutPort = LavaPyType(cls=<class 'lava.magma.core.model.py.ports.PyOutPortVectorDense'>, d_type=<class 'bool'>, precision=None)¶
- x: ndarray = LavaPyType(cls=<class 'numpy.ndarray'>, d_type=<class 'float'>, precision=None)¶
- x_out: PyOutPort = LavaPyType(cls=<class 'lava.magma.core.model.py.ports.PyOutPortVectorDense'>, d_type=<class 'numpy.float32'>, precision=None)¶
- xn_in: PyInPort = LavaPyType(cls=<class 'lava.magma.core.model.py.ports.PyInPortVectorDense'>, d_type=<class 'numpy.float32'>, precision=None)¶